Responses of transpiration and hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings.
نویسنده
چکیده
Suboptimal N or P availability and cool temperatures all decrease apparent hydraulic conductance (L) of cotton (Gossypium hirsutum L.) roots. The interaction between nutrient status and root temperature was tested in seedlings grown in nutrient solutions. The depression of L (calculated as the ratio of transpiration rate to absolute value of leaf water potential [Psi(w)]) by nutrient stress depended strongly on root temperature, and was minimized at high temperatures. In fully nourished plants, L was high at all temperatures >/=20 degrees C, but it decreased greatly as root temperature approached the chilling threshold of 15 degrees C. Decreasing temperature lowered Psi(w) first, followed by transpiration rate. In N- or P-deficient plants, L approached the value for fully nourished plants at root temperatures >/=30 degrees C, but it decreased almost linearly with temperature as roots were cooled. Nutrient effects on L were mediated only by differences in transpiration, and Psi(w) was unaffected. The responses of Psi(w) and transpiration to root cooling and nutrient stress imply that if a messenger is transmitted from cooled roots to stomata, the messenger is effective only in nutrient-stressed plants.
منابع مشابه
Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants.
Suboptimal levels of phosphorus (P) strongly inhibited leaf expansion in young cotton (Gossypium hirsutum L.) plants during the daytime, but had little effect at night. The effect of P was primarily on cell expansion. Compared to plants grown on high P, plants grown on low P had lower leaf water potentials and transpiration rates, and greater diurnal fluctuations in leaf water potential. Hydrau...
متن کاملAn Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?
Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic ...
متن کاملHydraulic conductances of angiosperms versus conifers: similar
because of slow growth rates caused by an inefficient transport system and low leaf photosynthetic capacity, gymnosperm seedlings are weak competitors with angiosperms in productive habitats. We measured component (shoot, leaf, and root) and whole-plant hydraulic conductances of sapling-sized tropical plants growing on nitrogen-poor white sand in Borneo. After accounting for size effects, there...
متن کاملHydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.
Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xy...
متن کاملAquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.
The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 92 3 شماره
صفحات -
تاریخ انتشار 1990